
Feature Flags Are Changing
Observability As You Know It

ven the best written code breaks sometimes. Even

the most well-built features can have unforeseen

downstream effects. These challenges are an inevitable

part of the development process, but to keep your

software healthy and customers happy, fast and

effective fixes are key.

Of course, there’s no incident response without visibility.

You’ve probably implemented monitoring tools to report

on your system, but how do you get from knowing what

healthy performance looks like to quickly detecting and

dealing with issues, all without false positives?

Put simply, observability is the ability to understand how

your entire system works and fits together. From knowing

how everything works, you can identify the performance

factors to monitor and pinpoint problems in the internal

system based on the external outputs you get. In other

words, you can navigate from the effect to the cause.

It’s broadly accepted that there are three pillars of

observability:

Having all these capabilities certainly helps your system

become more observable — but as your software and

infrastructure gain components and complexity, you’ll find

that the devil really is in the details. For instance, while you’re

already using a comprehensive tool that offers metrics,

logs, and tracing (e.g., Datadog, New Relic, Dynatrace),

it’s likely that you’re also still performing hotfixes and

rollbacks because you’re unable to pinpoint the root case

of code issues.

Logs

Records of actions and events that happen in a system,

including fault details. Logs help you troubleshoot code,

identify where and why errors happen, and identify

unpredictable and emergent behaviors.

Tracing

Following the whole journey of a request or action

through your system. Trace data lets you profile system

health and helps you identify the most valuable logs and

metrics to use for analysis and troubleshooting.

Observability: The Three Pillars

page 1

Have you ever shipped a feature to end users, only for

performance issues to flare up somewhere in your system?

It’s a high-stakes, high-stress situation; you’ve got to figure

out what exactly is causing errors and decide whether to

roll that feature back or hotfix it, all while managing other

parts of the development process.

Rollbacks and Hotfixes:
Problems of Scale

Metrics

Numerical values related to your system. Tools that

collate, analyze, and visualize metrics allow you to

understand how your system performance fares over

time and across infrastructure components.

LOG

https://www.split.io/glossary/false-positive-rate/

Feature Flags Are Changing Observability As You Know It

For troubleshooting performance, you want observability

on your side. As your software grows, the possible failure

nodes multiply along with it — and with the pressure for

teams to develop and deliver faster, identifying where and

why problems arise in your system is an increasingly

difficult task.

When rapid feature delivery meets a lack of visibility, this

leads to more unchecked failures and, in turn, more

emergency recovery measures that can bring further risk

and inefficiency.

Split’s research shows:

Here’s the bottom line: companies are releasing features

quickly, but they’re frequently running into issues with

system performance and timely error detection. And in

these situations, you don’t want to rely on a rollback or

hotfix to save the day.

Rollbacks rarely provide fast solutions. If something goes

wrong and developers can’t identify which particular

change caused it, they need to roll back whole sets of

changes to correct the error — a process that can prove

disruptive.

Meanwhile, hotfixes up the risk factor significantly. Rather

than reverting a change, hotfixes see developers push

code changes live into production without thorough testing,

in hopes that they’ll fix errors — a gamble that often

introduces entirely new problems.

If you can’t quickly detect issues and fix them reliably, your

user experience suffers. And that’s a bad sign for your

company’s bottom line and reputation. The good news? As

software has evolved, so has observability.

While there are monitoring and observability tools out there

to cover the three pillars, Split’s feature delivery platform

complements them by combining feature flags with data

analytics to make your overall observability posture even

stronger.

Being observable leads to being proactive — and

automation is crucial to this. Data on dashboards is just the

starting point for what monitoring needs to do for you; fast

releases, fast troubleshooting, fast iterations are all

In modern software development, monitoring and

observability must occur at the individual feature level.

Why? Because when you track granular changes, you see

the root cause behind each new effect — and that’s

essential to stay on top of error detection and response.

Let’s say your new release is a mixed success: it hits the

goal you were aiming for but negatively impacts another

element of the user experience. When you’re observable

down to the level of each feature, you don’t need to make

surgical rollbacks or cross your fingers for a hotfix that

works; you can just stop the feature immediately, solving the

user experience problem, and apply a fix or refinement on

your own timeline.

You do this by using feature flags — mechanisms that let

you choose between different code paths in your system at

runtime. Often, feature flags look like “if/else” statements in

code that you use to toggle releases and experiments on

and off. Feature flags can be combined with metrics data to

provide a view of each feature in isolation. From this, you

can understand the impact of each feature and act quickly

to address it.

In that sense, feature flags give you visibility into where

things happen and control over who features reach and

how they’re rolled out. These are both essential ingredients

to experimentation and quality assurance, letting you limit

the blast radius when an error happens, or an idea doesn’t

perform the way you want.

page 2

Feature Flags: An Added Dimension

Observable Features:
The Next Level

of organizations release features on a bi-weekly basis

of organizations must either roll back or hotfix more than 10%

of new features

of organizations take more than a day to detect issues with

new releases

of organizations experience downtime after new releases

67%

27%

41%

38%

https://www.split.io/company/newsroom/press-releases/survey-of-devops-professionals-reveals-that-despite-releasing-faster-rollbacks-and-hotfixes-are-still-common/
https://www.split.io/guides/feature-flags/

Feature Flags Are Changing Observability As You Know It

Split in Action: A Success Story

Surfline, the world’s largest surf forecasting site, partnered with Split to

improve its development velocity and scale its analytics across all feature

releases. Here’s what they achieved:

Greater Focus on Innovation

Before Split, rollbacks could take from a couple of hours to a day, and with

Surfline deploying twice a week, the equivalent lost time was half that of a

full-time engineer. By using feature flags to decouple deploy and release,

Surfline gained back this time and can focus on making improvements.

Better Data Analysis

Surfline used various data analysis tools but found it challenging to

measure performance against KPIs for every feature release or in testing

and staging environments. With Split’s analytics integrations and

experimentation support, Surfline now analyzes the results of feature

rollouts and tests across all of their metrics.

Surfline now has the observability to view each release as an opportunity

to experiment and refine features to be their best.

near-impossible without an automated engine that alerts

you of the business impact of each change with analysis of

the root cause.

If your team needs to dig through the system to find this

information, then that’s just another manual task in the way.

This is why Split’s platform comes with Feature Monitoring

— an automated detection function that alerts teams to

errors and performance issues in code releases. It goes

beyond traditional monitoring by connecting issues to

specific features, making them genuinely observable.

By isolating the impact of each feature, Feature Monitoring

lets teams deliver on core response metrics:

Split’s feature delivery platform brings feature flags,

automation, and analytics together to speed up detection

and response, giving you the visibility and insight for fast and

effective experimentation.

Want to test an idea? Split integrates feature flags with the

data you need, ingesting metrics from any source,

automatically calculating the impact of each feature,

Reduce time to remediate iwith alerts that tell you

exactly where the problem is and feature flags that

let you shut down errors with a click before they

detract from the user experience.

Impact fewer users by making releases available to

only small segments of your user base.

Speed up time to detect with an analytics engine

that measures performance and detects issues in

real time.

Eliminate alarm tuning by treating feature releases

as randomized controlled trials. This accounts for

gradual system changes, other releases, and

external factors like marketing pushes; the alerts

you’ll get for each feature are strictly relevant to its

performance.

Cut down on false alarms by using performance

statistics to drive incident response.

and quickly finding the root cause. You’ll know exactly how

customers respond to your features — and with that info,

you can make them more effective with each iteration. Aim

higher, achieve more.

Together, feature flags and automated analytics push your

observability efforts forward. By seeing how each individual

feature behaves and how it measures up to your business

outcomes — layered with the power to toggle it on and off —

you get the speed, visibility, and control to fix and refine your

features. This means you can make your features the best

they can be and release them at the pace you want.

Observability at this level opens up a few new doors for your

team. For one, you can achieve progressive delivery — the

ability to implement gradual feature rollouts at any time,

using feature flags to quickly test, release, and neutralize

errors. It also helps to create a culture of knowing better and

doing better; your team is more engaged and responsible

when it knows where and how to improve, and that there’s

always room to try out the next big idea.

Still dealing with rollbacks, hotfixes, and unknowns in your system? Split gives you a

fast and easy way to control risks and gain performance insight. Get in touch to see

what feature flags and data can do for you.

https://www.split.io/blog/introducing-feature-monitoring/
https://www.split.io/customers/surfline/
https://www.split.io/contact-sales/

